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1    Introduction 
Researchers in computer vision and pattern recognition 
have worked on automatic techniques for recognizing hu- 
man faces for the last 20 years. While there have been 
successful systems, especially those systems using a pic- 
torial representation for faces, most face recognition sys- 
tems operate under relatively rigid imaging conditions: 
lighting is controlled, people are not allowed to make fa- 
cial expressions, and facial pose is fixed at a full frontal 
view. We have developed a face recognition system that 
works under varying pose, with the ultimate goal of mak- 
ing the conditions under which face recognizers operate 
less rigid. 

1.1     The problem 

What is the problem of automatic face recognition? 
Given as input the visual image of a face, which might be 
a digitized signal from a video camera or a digitized pho- 
tograph, compare the input face against models of faces 
that are stored in a library of known faces and report a 
match if one is found. A related problem is face verifica- 
tion: given an input face image and a proposed identity, 
verify that the face indeed belongs to the claimed per- 
son. The problem of face segmentation, distinguishing 
faces from a cluttered background, is usually avoided by 
imaging faces against a uniform background. 

The problem of face recognition has attracted re- 
searchers not only because faces represent a challeng- 
ing class of naturally textured 3D objects, but because 
of the many applications of automatic face recognition. 
In building security, a face recognizer could be used at 
the front entrance for automatic access control. They 
could be used to enhance the security of user authenti- 
cation in ATMs by recognizing faces as well as requir- 
ing passwords. In the human/computer interface arena, 
workstations with cameras would be able to recognize 
users, perhaps automatically loading the user's environ- 
ment when he sits down in front of the machine. 

Face recognition is difficult for two major reasons. 
First, faces form a class of fairly similar objects - all 
faces consist of the same facial features in roughly the 
same geometrical configuration. Thus, the task of face 
recognition is a fine discrimination task which may re- 
quire the use of subtle differences in facial appearance or 
the configuration of features. Second, face recognition is 
also made difficult because of the wide variation in the 
appearance of a particular face due to imaging condi- 
tions such as lighting and pose, as in the more generic 
task of 3D object recognition. Because of the detailed 3D 
structure of the face, the 2D image of a face changes as 
it undergoes rotations "in depth" or as the light source 
changes direction. The non-rigidity of faces, caused by 
changes in facial expressions, adds to the variability of 
facial appearance. 

In this paper we describe a view-based approach to 
recognizing faces under varying pose. In our system, 
faces will be modelled with multiple views that cover the 
viewing sphere. To recognize a novel view, the recognizer 
locates the eyes and nose features, uses these locations to 
geometrically register the input with model views, and 
then uses correlation on model templates to find the best 

match in the data base of people. 

1.2     Existing work 

Since our face recognizer finds facial features in order to 
register the input image with the model views, our dis- 
cussion of existing work, in addition to face recognition, 
will include facial feature detection. 

1.2.1     Facial feature detection 

Facial feature detection, for the most part, is the prob- 
lem of locating the major facial features such as the eyes, 
nose, mouth, and face outline. Some researchers have 
also addressed the issue of characterizing facial features, 
usually with the parameters of a model fit to the feature. 
While most feature detection efforts are motivated by the 
need to geometrically normalize a face image prior to 
recognition, other applications of facial features include 
face tracking and attentional mechanisms for locating 
faces in cluttered images. 

Most research to date has taken one of three major 
approaches, a parameterized model approach, a pictorial 
approach, and the use of grey level interest operators. 
In one parameterized model approach, deformable tem- 
plate models of individual facial features are fit to the im- 
age by minimizing an energy functional (Yuille, Hallinan, 
and Cohen[43], Hallinan[18], Shackleton and Welsh[34], 
Huang and Chen[20]). These deformable models are 
hand constructed from parameterized curves that out- 
line subfeatures such as the iris or a lip. An energy 
functional is defined that attracts portions of the model 
to preprocessed versions of the image - peaks, valleys, 
edges - and model fitting is performed by minimizing this 
functional. A related model-based approach fits a global 
head model constructed from tens of feature locations 
(Bennett and Craw[4], Craw, Tock, and Bennett[14], 
Cootes, et a/.[12]) to the image by varying individual fea- 
ture locations. Terzopoulos and Waters [37] have used 
the active contour model of snakes to track facial fea- 
tures in image sequences. 

In the pictorial approach, a pixel-based representation 
of facial features is matched against the image. This rep- 
resentation may be templates of the major facial features 
(Bichsel[6], Baron[3], Burt[8], Poggio and Brunelli[7]) or 
the weights of hidden layer nodes in neural networks 
(Vincent, Waite and Myers[39]). For the template-based 
systems, correlation on preprocessed versions of the im- 
age is the typical matching metric. The neural network 
approaches construct a network where implicit feature 
templates are "learned" from positive and negative ex- 
amples. 

Another major approach to facial feature finding is 
the use of low level intensity-based interest operators. 
As opposed to the model-based and template-based ap- 
proaches, this approach does not find features with se- 
mantic content as, say, an eye, nose or mouth detector 
does. Instead, the features are defined by the local grey 
level structure of the image, such as corners (Azarbaye- 
jani, et al. [2]), symmetry (Reisfeld and Yeshurun[32]), 
or the "end-inhibition" features of Manjunath, Shekhar, 
Chellappa, and von der Malsburg[28], which are ex- 
tracted from a wavelet decomposition of the image. 



1.2.2     Face recognition 
While the earliest work in automatic face recognition 

dates back two decades (Kanade[21]), the topic has seen 
renewed interest in the last few years. Most face recog- 
nition systems operate on intensity images of frontal or 
nearly frontal views of a face, and practically all of them 
follow the same basic recognition technique. The rec- 
ognizer makes a linear scan through a library of known 
faces, comparing the input to each model face. This 
comparison is performed using a distance metric, such 
as a weighted Euclidean distance or correlation, in the 
space used for representing faces. The model yielding the 
smallest distance is reported as the identified person. In 
addition, some systems include the notion of rejecting 
the input if the best match is not good enough. 

Our discussion of existing work will be divided into 
sections on input representation, invariance to imaging 
conditions, and experimental issues such as recognition 
rate. 

Input representation Comparing model and input 
faces boils down to performing distance measurements in 
the space used to represent faces. As current face recog- 
nition systems use fairly standard distance metrics like 
weighted norms and correlation, the main factor that dis- 
tinguishes different approaches is input representation. 
There are two main approaches to input representation, 
a geometrical approach that uses the spatial configura- 
tion of facial features, and a more pictorial approach that 
uses an image-based representation. 

There have been several feature geometry approaches, 
beginning with the seminal work of Kanade[21], 
and including Kaya and Kobayashi[22], Craw and 
Cameron[13], Wong, Law, and Tsang[41], Brunelli and 
Poggio[7], and Chen and Huang[10]. These feature-based 
systems begin by locating a set of facial features, includ- 
ing such features as the corners of the eyes and mouth, 
sides of the face and nose, nostrils, the contour along the 
chin, etc. The spatial configuration of facial features is 
captured by a feature vector whose dimensions typically 
include measurements like distances, angles, and curva- 
tures. Once faces are represented by feature vectors, the 
similarity of faces is measured simply by the Euclidean 
distance or a weighted norm, where dimensions are usu- 
ally weighted by some measure of variance. 

The second major type of input representation is pic- 
torial in nature, representing faces by using filtered im- 
ages of model faces. In template-based systems, the sim- 
plest pictorial representation, faces are represented ei- 
ther by images of the whole face or by subimages of the 
major facial features such as the eyes, nose, and mouth 
(Baron[3], Brunelli and Poggio[7], Yang and Gilbert[42], 
Burt[8], Bichsel[6]). Template images need not be taken 
from the original grey levels; some systems use the gra- 
dient magnitude or gradient vector field in order to get 
invariance to lighting. An input face is then recognized 
by comparing it to all of the model templates, typically 
using correlation as an image distance metric. 

Principal components analysis has been explored as 
a means for both recognizing and reconstructing face 
images (Kirby and Sirovich[23], Turk and Pentland[38], 

Akamatsu, et al.[l], Craw and Cameron[13], Dalla Serra 
and Brunelli[33]). It can be read as an suboptimal picto- 
rial approach, reducing the dimensionality of the input 
space from the number of pixels in the templates to the 
number of eigenpictures, or "eigenfaces", used in the rep- 
resentation. In this approach, one first applies principal 
components analysis to an ensemble of faces to construct 
"face space". This forms the representation onto which 
all faces are projected and distance measurements are 
performed. 

Besides principal components analysis, other analysis 
techniques have been applied to images of faces, gen- 
erating a new, more compact representation than the 
original image space. Examples include autocorrelation 
(Kurita, Otsu and Sato[25]), Singular Value Decomposi- 
tion (Cheng, et al.[ll] and Hong[19]), and vector quan- 
tization (Ramsay, et al. [31]) 

Connectionist approaches to face recognition also use 
pictorial representations for faces (Kohonen[24], Fleming 
and Cottrell [16], Edelman, Reisfeld, and Yeshurun[15], 
Weng, Ahuja, and Huang[40], Fuchs and Haken[17], 
Stonham[36]). Since the networks used in connectionist 
approaches are just classifiers, these approaches are sim- 
ilar to the ones described above. Different pixel-based 
representations have been used, with [24], [16], [17] us- 
ing the original grey level images. [40] uses directional 
edge maps, [36] uses a thresholded binary image, and 
[15] uses Gaussian units applied to the grey level image. 

Hybrid representations that combine the geometrical 
and pictorial approaches have been explored, such as 
Cannon et al. [9], whose feature vector face representa- 
tion includes geometrical and template-based informa- 
tion. In another hybrid approach, Lades et <z/.[26] and 
Manjunath, Chellappa, and von der Malsburg[27] repre- 
sent faces as elastic graphs of local textural features. 

Invariance to imaging conditions The wide varia- 
tion in face appearance under changes in pose, lighting, 
and expression makes face recognition a difficult task. 
While existing systems do not allow much flexibility in 
pose, lighting, and expression, most systems do provide 
some flexibility by using invariant representations or per- 
forming an explicit geometrical normalization step. 

Representations invariant to changes in lighting and 
pose have been used to increase the robustness of face 
recognizers. For instance, filtering the face image with 
a bandpass filter like the Laplacian provides some in- 
variance to lighting. Assuming that the image content 
due to lighting is lowpass, bandpass filtering should re- 
move the lighting effects while still preserving the higher 
frequency texture information in the face. To provide 
shift invariance, some systems preprocess images using 
the Fourier transform magnitude (Akamatsu, et al.[l]) 
or autocorrelation (Kurita, Otsu and Sato[25]). 

By finding at least two facial features - usually the 
eyes in existing systems - the face can be normalized for 
translation, scale, and image-plane rotation. In feature 
geometry approaches, distances in the feature vector are 
normalized for scale by dividing by a given distance such 
as the interocular distance. In template-based systems, 
faces are often geometrically normalized by rotating and 
scaling the input image to place the eyes at fixed loca- 



tions. This normalization step reduces pose space from 
its original 6D formulation to a 2D space of rotations 
out of the image plane. In a recognizer that allows gen- 
eral pose, rotations on the viewing sphere still need to 
be handled. 

Most face recognition systems are not designed to 
handle changes in facial expression or rotations out of 
the image plane. By tackling changes in pose and light- 
ing with the invariant representations and normaliza- 
tion techniques described above, current systems treat 
face recognition mostly as a rigid, 2D problem. There 
are exceptions, however, as some systems have employed 
multiple views ([1], [25]) and flexible matching strategies 
([27], [26]) to deal with some degree of expression and 
out-of-plane rotations. What distinguishes our approach 
from these techniques, which will be explained in section 
1.3, will be a wider allowed variation in viewpoint. 

Experimental issues The evaluation of face recogni- 
tion systems is largely empirical, requiring experimental 
study on a set of test images. Probably the two most 
important statistics are the recognition rate and model 
library size. Systems that include rejection also report 
the false access rate, usually defined as the fraction of 
false accepts on test images of faces not in the library. 

Some recent systems have been quite successful, 
achieving high recognition rates and using relatively 
large data bases of people. For example, Baron[3] 
reached an impressive 100% recognition rate on a library 
of 42 people and a false access rate of 0% on 108 images. 
Brunelli and Poggio's system[7] achieved a recognition 
rate of 100% on frontal views of 47 people. Cannon, 
et al.[9] report a 96% recognition rate on a library of 
50, and Turk and Pentland[38] report a 96% recognition 
rate when their system, which uses a library of only 16 
people, is tested under varying lighting conditions. 

Needless to say, these recognition statistics are mean- 
ingful only if the library of model faces is sufficiently 
large. While there is no consensus on the sufficient size of 
the model database, some of the more recent approaches 
([25], [6], [27]) have used libraries on the order of 70 
people or more. 

1.3     Our view-based recognizer 

As discussed in the previous section, not much work 
has taken face recognizers beyond the narrow imaging 
conditions of expressionless, frontal views of faces with 
controlled lighting. More research is needed to enable 
automatic face recognizers to run under less stringent 
imaging conditions. Our goal is to build a face recog- 
nizer that works under varying pose, the difficult part of 
which is to handle face rotations in depth. Building on 
successful template-based systems, our basic approach 
is to represent faces with templates from multiple model 
views that cover different poses from the viewing sphere. 

Our face recognizer deals with the problem of arbi- 
trary pose by applying a feature finder and pose esti- 
mation module before recognition. As mentioned for 
existing work, one can normalize the input image for 
translation, scale, and image-plane rotation by detect- 
ing the eyes and then applying a similarity transform to 
place the eyes at known locations. The remaining pose 

parameters, rotations in depth, can be estimated by a 
pose module and then used to select model views similar 
in pose to the input. 

Our feature finder/pose estimation module finds the 
two eyes and a nose lobe feature and estimates the pose 
rotation parameters out of the image plane. The method 
is template-based, with tens of facial feature templates 
covering different poses and different people. Organizing 
the search over pose space in a hierarchical coarse-to-fine 
manner helps keep the computation time under control. 
To geometrically align the input face with a model view, 
the recognizer applies an affine transform to the input to 
bring the three feature points into correspondence with 
the same points on the model. 

The template-based recognizer uses templates of the 
eyes, nose, and mouth to represent faces. These tem- 
plates, as well as the input image, are preprocessed with 
a differential operator such as the gradient or Laplacian 
in order to provide some invariance to lighting. After the 
geometrical alignment step, the templates are matched 
against a model view using normalized correlation as a 
metric. 

This paper is divided into three main sections. The 
first describes the experimental setup for taking face im- 
ages under varying pose and the data base of modelling 
and testing faces we have acquired. Next, we discuss the 
feature finder/pose estimator and its performance on the 
entire data base. Finally, we present the template-based 
recognizer and the results of recognition experiments for 
different types of preprocessing and different scales. 

2 Experimental setup 
In our view-based approach for face recognition under 
varying pose, faces are represented using many images 
that cover the viewing sphere. Currently we use 15 
views per person, sampling 5 left/right rotations and 3 
up/down rotations, as shown in figure 1. When a subject 
is added to the library of faces, modelling and test image 
data is taken with a camera perched on top of a work- 
station monitor. To help collect the modelling views, 
we fit a large piece of posterboard around the monitor 
with dots indicating the viewing sphere locations being 
sampled. When taking the modelling views, the sub- 
ject is asked to rotate his head to point his nose at each 
of the 15 dots. No mechanisms are used to make the 
subjects poses accurate relative to the ideal "dot" poses 
other than our oral instructions fine tuning the subject's 
pose. This field of dots sample the 5 left/right rotations 
at approximately -30, -15, 0, 15, and 30 degrees and the 
3 up/down rotations at approximately -20, 0, and 20 de- 
grees. The two rotation parameters are restricted so that 
the two eyes are always visible; this is why the left/right 
rotation parameter is not sampled beyond 30 degrees. 

In addition to the 15 modelling views, 10 test views 
are taken per person. For these test views, the subject is 
instructed to choose 10 points at random within the rect- 
angle defined by the outer border of dots. The test poses 
can fall close to model poses or in between them. The 10 
views are divided into two groups of 5. The first group is 
similar to the modelling views in that only the left/right 
and up/down rotational parameters are allowed to vary. 



For the second group of 5, the subject is allowed to in- 
troduce image-plane rotation. See figure 2 for example 
test views. 

We currently have 62 people in the data base for a 
total of 930 modelling and 620 testing views. The col- 
lection of people is fairly varied, including 44 males and 
18 females, people from different races, and an age range 
from the 20s to the 40s. We have plans in the future to 
expand the data base to around 100 people. 

For both the modelling and testing views, the lighting 
conditions are fixed and consist of a 60 watt lamp near 
the camera supplemented by background lighting from 
windows and overhead lights. Facial expressions are also 
fixed at a neutral expression. 

After taking the modelling and testing images, we 
manually specify the locations of the two irises, nose 
lobes, and corners of the mouth. These manual feature 
locations are used for four purposes. During batch eval- 
uations of the feature finder, they serve as ground truth 
data for validating the locations returned by the feature 
finder. Also in the feature finder, the manual locations 
actually define the "interest points" - irises, lobes of the 
nose - within the templates used by the feature finder. 
For the recognizer itself, feature locations are used to au- 
tomatically define the bounding boxes of facial feature 
templates in the model images, as will be discussed in 
section 4. Lastly, the recognizer also uses manual loca- 
tions in the model views during the geometrical align- 
ment step between input and model images. 

3    Feature detection and pose 
estimation 

The first stage of processing in the proposed face recogni- 
tion architecture is a person-independent feature finding 
and pose estimation module. As mentioned in the intro- 
duction, the kind of facial features sought by the feature 
finder are the two eyes and at least one nose feature. 
The locations of these features are used to bring input 
faces into rough geometrical alignment with model faces. 
Pose estimation is used as a filter on the library models, 
selecting only those models whose pose is similar to the 
input's pose. By pose estimation we really mean an esti- 
mate of the rotation angles out of the image plane since 
feature locations have already been used to normalize 
for position, scale, and image-plane rotation. Pose es- 
timation is really an optimization step, for even in the 
absence of a robust pose estimator, the system could still 
test the input against all model poses of all people. 

3.1     Overview 

While techniques already exist for finding facial features, 
no current system can deal with large face rotations out 
of the image plane, so we needed to build a system that 
addresses this issue. As mentioned in the introduction, 
existing methods for finding facial features with seman- 
tic content (i.e. the eyes or nose, as opposed to, say, 
a grey level interest operator) tend to fall into one of 
two categories, a pictorial approach and a model-based 
approach. In the model-based approach, however, the 
models and fitting procedures are ad hoc and require ex- 

perimentation to fine-tune the models. The amount of 
work is manageable for one view but might become te- 
dious as models and fitting rules for different views on 
the viewing sphere are developed. Thus, we chose to ex- 
plore a template-based approach for our feature finder, 
primarily for its simplicity. 

To serve as the front end of a pose independent face 
recognizer, the feature finder must, of course, handle 
varying pose and be person independent. The current 
system addresses these requirements by using a large 
number of templates taken from multiple poses and from 
different people. To handle rotations out of the image 
plane, templates from different views on the viewing 
sphere are used. Templates from different scales and 
image-plane rotations can be generated by using stan- 
dard 2D rotation and scaling operations. To make the 
feature finder person independent, the templates must 
cover identity-related variability in feature appearance 
(e.g. tip of nose slanted up versus down, feature types 
specific to certain races). I use templates from a va- 
riety of exemplar faces that sample these basic feature 
appearances. The choice of exemplars was guided by a 
simple clustering algorithm that measures face similarity 
though correlation. 

Our feature finder, then, entails correlation with a 
large number of templates sampling different poses and 
exemplars. To keep this search under control, we use 
a hierarchical coarse-to-fine strategy on a 5 level pyra- 
mid representation of the image. In what follows level 0 
refers to the original image resolution while level 4 refers 
to the coarsest level. The search begins by generating 
face location hypotheses at level 4, where the pose pa- 
rameters are very coarsely sampled and only one exem- 
plar is used. Exploring a level 4 hypothesis is organized 
as a tree search through the finer pyramid levels. As 
processing proceeds to finer levels, the pose parameters 
are sampled at a higher resolution and the different ex- 
emplars are used. A branch at any level in the search 
tree is pruned if the template correlation values are not 
above a level-dependent threshold. 

The tree searching strategy starts out as a breadth 
first search at the coarser levels where the correlation 
scores are not entirely reliable. As processing reaches 
lower levels in the pyramid, correlation scores become 
more reliable and the search strategy switches to depth 
first. Search at levels 4 and 3 is breadth first: all possi- 
ble level 3 hypotheses are generated from all level 4 hy- 
potheses and then sorted by correlation score. Then the 
search strategy switches to a depth first search of level 
3 hypotheses. If any leaves in the search tree (at level 
0) pass the template correlation threshold tests, then the 
search is terminated - no more level 3 hypotheses are ex- 
plored - and the leaf with the highest correlation scores 
is reported. 

3.2    Hierarchical processing 

Search over different poses and exemplars through the 
5 levels of the pyramid is organized as follows. At the 
coarsest level, level 4, the system is trying to get an 
estimate of the overall position of the face, so a bank 
of 30 different whole-face templates are correlated over 



the entire image. Because the resolution at this pyra- 
mid level is very coarse - the interocular distance is only 
around 4 pixels - the pose parameters can be sampled 
very coarsely, and only one exemplar is used. Currently, 
the system uses 5 left/right rotations (-30, -15, 0 15. 
30), three image-plane rotations (-30, 0, 30), and two 
scales (interocular distances of 3 and 3.75). Local max- 
ima above a certain threshold in the correlation scores 
generate face location hypotheses, which are explored by 
refining the search over pose parameters at the mid levels 
resolutions, levels 3 and 2. 

When a pose hypothesis is being refined at level 3 
or 2, pose space is explored at a higher resolution in 
a small neighborhood around the coarser pose estimate 
of the previous level. At level 3, for instance, the 5 
left/right viewing sphere angles are expanded to include 
3 up/down rotations (-20, 0, 20), bringing up to 15 the 
number of viewing sphere angles explored. Also at level 
3 the image-plane rotation parameter is sampled at twice 
the resolution of level 4, now including 7 different rota- 
tions at 15 degree increments. The different exemplars 
are also tested. As mentioned before, pose space is ex- 
plored in a small neighborhood around the coarse es- 
timate of the previous level, so a level 4 hypothesis is 
examined at level 3 by searching over 3 up/down rota- 
tions, 3 image-plane rotations, and the different exem- 
plars (currently 6) in a neighborhood around the level 
4 correlation maxima. Pose hypotheses from levels 3 
through 0 keep track of how all exemplars match the 
image at that pose. 

For each of these level 3 hypotheses, search at level 2 
occurs only if the template correlation is above a certain 
threshold. At level 2, the resolution of image-plane rota- 
tions is doubled again to every 7.5 degrees (for a total of 
15 rotations from -52.5 to 52.5) and the search over the 
3 up/down rotations is repeated. For level 2 hypotheses 
surviving the threshold test on the correlation values, 
the resolution of the image is high enough to allow es- 
timating the locations of features, in this case the two 
irises and a nose lobe. 

The repetition of the up/down rotation search on level 
2 is done to increase the flexibility of the search - it is not 
always possible to make a choice on the up/down rota- 
tion at level 3, but including the extra up/down rotation 
templates at that level assures that true positives are not 
rejected by the thresholding step. In general, the level 
for which the decision for a pose parameter is made may 
either be hard to estimate or person-dependent, so while 
repeating a search at two adjacent levels may increase 
running time, it also increases system flexibility. 

Processing at the finest levels of the pyramid, levels 1 
and 0, are essentially verification steps. Level 2 hypothe- 
ses provide relatively good estimates of feature locations, 
and the finer levels use the eye locations to geometri- 
cally align the templates and image before correlating 
with templates. No further search over pose space or 
exemplars is performed. The correlation tests at these 
levels serve to weed out any remaining false positives; hy- 
potheses surviving level 0, which is at the resolution of 
the original image, are assumed to be correct and cause 
termination of the depth first search. 

3.3     Template matching 

Templates are manually chosen from 15 modelling im- 
ages of the exemplars covering the viewing sphere. A 
special mask-defining program is utilized to draw tem- 
plate boundaries over the example modelling images. As 
templates are defined by these binary masks, templates 
can be tailored to tightly encircle certain features, not 
being limited to square regions. Actual templates used 
by the feature finder vary according to the level of pro- 
cessing. At level 4, the system is trying to get a general 
estimate of the face position, so full face templates are 
used, templates that run from above the eyebrows to be- 
low the chin. At finer resolutions the feature finder uses 
multiple templates that cover smaller areas. At level 
3, two templates that cover the eyes and nose region 
are employed, as shown in figure 3. The template in 
the middle handles faces where bangs come down to the 
eyebrows and obscure the skin above the eyebrows. At 
level 2, the same eye/nose masks at level 3 are used, but 
the template is broken up into two eye and one nose sub- 
templates. At level 1, the same eye/nose masks are again 
used, but each eye and the nose are themselves vertically 
divided into two subtemplates, which yields 6 subtem- 
plates total. Level 0 uses the subtemplate set of level 
1 augmented by a circular subtemplate centered around 
the iris center or nose lobe feature. 

The correlation thresholding test is based on eye and 
nose features, their subtemplates, and the fact that a 
pose hypothesis keeps track of the different exemplars. 
For a particular exemplar eye or nose feature, the cor- 
relation thresholding test requires that all subtemplates 
of the eyes and nose features exceed the threshold. For 
a pose hypothesis to pass the thresholding test, there 
must be some combination of passing eye and nose tem- 
plates; the passing templates need not come from the 
same exemplar. This mixing of eye and nose templates 
across exemplars increases the flexibility of the system, 
as a face whose eyes match only exemplar A and whose 
nose matches only exemplar B will still be allowed. 

Template matching is performed by using normalized 
correlation on processed versions of the image and tem- 
plates. Normalized correlation follows the form 

_ <r/>-<r></> 
a{T)a{l) 

where T is the template, I is the subportion of image 
being matched against, <> is the mean operator, and 
0-0 measures standard deviation. We hope that normal- 
ized correlation will give the system some invariance to 
lighting conditions and the dynamic range of the cam- 
era, as the image mean and standard deviation are fac- 
tored out. Correlation is normally carried out on pre- 
processed versions of the image and templates, again to 
provide for some invariance to lighting. While we have 
explored the x and y components of the gradient, the 
Laplacian, and the original grey levels, no preprocessing 
type has stood out as the best. Performing correlation 
using these different preprocessings and then summing 
the result, however, empirically yields more robust per- 
formance than any single type of preprocessing. Thus, 
the current system performs separate correlations using 



the grey levels, x and y components of the gradient, and 
Laplacian, and then sums the results. 

At higher resolutions in the pyramid, the details of in- 
dividual features emerge. This might foil the matching 
process because the features in the input will not pre- 
cisely match the templates due to differences in identity 
and pose. For instance, the features in the input may 
not sufficiently close to any of the exemplar features, or 
the input features may be from a novel pose that is in 
between the template modelling views. In order to bring 
the input features into a better correspondence with the 
templates, we apply an image warping algorithm based 
on optical flow to "warp" the input features to make 
them look like the templates. First, the optical flow is 
measured between the input features and the template 
using the hierarchical gradient-based scheme of Bergen 
and Hingorani[5]. This finds a flow field between the in- 
put feature and template, which can be interpreted as 
a dense set of correspondences. The input feature, as 
shown in figure 4, is then graphically warped using the 
flow field to make the input feature mimic the appear- 
ance of the template. This helps to compensate for small 
rotational and identity-related differences between the 
input features and templates. Correlation is performed 
after the image warping step. 

Final feature locations are determined from a success- 
ful level 0 match returned by the depth first search. Fea- 
ture points at the center of the irises and the nose lobes, 
which are manually located in the templates, are mapped 
to the corresponding points in the input image using the 
correspondences from optical flow. Figure 5 shows the 
features located in some example test images. It is inter- 
esting to note that because correspondence from optical 
flow is dense, we could actually detect more than three 
feature points once we have brought our eye and nose 
templates into correspondence with the image; all we 
have to do is manually specify more points in the exem- 
plar templates. We stop at three points because that is 
all that is needed to specify the affine transform used by 
the geometrical alignment stage in the recognizer. 

To evaluate these feature finder locations, the system 
was run on all 1550 images in the data base, the 15 
modelling and 10 testing images of each of the 62 peo- 
ple. For a particular test run, let dmax be the maxi- 
mum distance between a detected feature and its man- 
ually chosen location. Four different feature finder out- 
comes were recorded:   good (dmax < tgood), marginal 
(tgood 5: dmax < '■marginal)j bad \dmax C. ^marginal), and 
null (no features found; all hypotheses rejected). We 
chose tgood to be about 15% of the interocular distance 
d and tmarginai to be 20% of d. In our exhaustive test 
of the data base, the system achieved a good outcome 
in 99.3% of the images, a marginal outcome in 0.3% of 
the images, and a bad outcome in 0.4%. No null cases 
were reported. The feature locations in either the good 
or marginal outcomes are sufficient for the geometrical 
alignment stage of the recognizer, so the recognizer can 
be run on the vast majority of the test images. 

In most of the error cases, the far eye in a rotated face 
is misplaced, perhaps being located in a nearby dark re- 
gion such as an eyebrow or a sliver of hair. Even in these 

cases, however, the nearer eye and the nose are correctly 
located. In all 1550 data base images except one, the 
feature finder returned at least two good features. 

The pose estimated by the system is simply given by 
the model pose that the level 0 templates are taken from. 
In the present system this estimate is not always correct, 
primarily because the image warping based on optical 
flow makes matching a little too flexible. Sometimes the 
warping actually changes the pose of the input to match 
templates from a different pose. Since it is difficult for 
the warping operation to transform between leftward- 
looking poses and rightward-looking ones, the pose es- 
timate can reliably distinguish between these two cases. 
Thus, the pose estimate passed on to the recognizer is 
currently "looking left" or "looking right". Even though 
this is a very coarse estimate, since pose estimation is 
only used to index the model library, we can compensate 
by simply letting more poses get through the indexing 
stage. Also, it should be possible to place a more re- 
fined pose estimation stage after feature extraction, an 
estimation stage that would use fixed templates and no 
warping operations. 

Because of the large number of templates, the compu- 
tation takes around 10-15 minutes on a Sun Sparc 2. Us- 
ing fewer exemplars decreases the running time but also 
reduces system flexibility and recognition performance. 

4    Face recognition using multiple views 

As mentioned in the introduction, template-based face 
recognizers have been quite successful on frontal views of 
the face (Baron[3], Turk and Pentland[38], Brunelli and 
Poggio[7]). Our goal is to extend template-based systems 
to handle varying pose, notably facial rotations in depth. 
Our approach is view-based, representing faces with tem- 
plates from many images that cover the viewing sphere. 
As discussed in section 2, our view-based face recognizer 
uses 15 views per person, sampling 5 left/right rotations 
and 3 up/down rotations. In this section we describe 
the view-based recognizer and experimental results on 
our data base of face images. 

4.1     Input representation: templates 
In order to build face models for the recognizer, tem- 
plates from the eyes, nose, and mouth are extracted from 
the modelling images, as shown in figure 6. Before ex- 
tracting the templates, scale and image-plane rotation 
are normalized in the model images to fix the interoc- 
ular distance and eliminate any head tilt. This is done 
by placing the eyes, as located manually, at fixed lo- 
cations in the image. Next, after the bounding boxes 
of the templates are automatically computed using the 
manually specified feature locations, the templates are 
extracted and stored to disk. 

We have done experiments to explore two aspects of 
template design, model image preprocessing and tem- 
plate scale. As discussed previously in the introduction, 
it is common in face recognition to preprocess the tem- 
plates to introduce some invariance to lighting condi- 
tions. So far we have tested preprocessing with the gra- 
dient magnitude, Laplacian, and x and y components 
of the gradient, as well as the original grey levels. The 



overall scale of the templates, as measured by the inte- 
rocular distance, is another design parameter we exam- 
ined. These experiments on preprocessing and scale will 
be described in the experimental results section. 

4.2    Recognition algorithm 

Our template-based recognizer takes as input a view of 
an unidentified person, compars it against all the people 
in the library, and returns the best match. Naturally, 
since we are exploring techniques for modelling varying 
pose, the face in the input image can be rotated away 
from the camera. The main constraint on input pose is 
that both eyes are visible. 

Pseudocode sketching the steps of our recognizer is 
given in figure 7. First, in step (1), the pose calculated 
by the feature finder/pose estimation module acts as a 
filter on the model poses: only those model poses that 
are similar to the input pose will be selected. Since our 
current implementation of the pose estimator can only 
distinguish between looking left and looking right, the 
poses selected by the recognizer for comparison are either 
the left three columns or right three columns of figure 1. 
In the future a more refined pose estimate will allow the 
recognizer to further winnow down the number of model 
poses it needs to test for each person. 

Next, in steps (2) and (3) the recognizer loops over 
the selected poses of all model people, recording tem- 
plate correlation scores from each of these model views 
in the cor array. The main part of the recognizer, steps 
(4)-(6), compares the input image against a particular 
model view. This comparison consists of a geometrical 
alignment step (step (4)) followed by correlation (steps 
(5)-(6)). The geometrical alignment step brings the in- 
put and model images into close spatial correspondence 
in preparation for the correlation step. To geometrically 
align the input image against the model image, first an 
affine transform is applied to the input to align three 
feature points, currently the two eyes and a nose lobe 
feature. In the input image these features are automat- 
ically located using the feature finder described in the 
previous section. For the models, manual feature loca- 
tions are used. Figure 8 shows an example input image 
and the result of affine transforming the image to align 
its features with those of the model in figure 6. 

The second part of the geometrical alignment step 
attempts to compensate for any small remaining geo- 
metrical differences due to rotation, scale, or expres- 
sion. A dense set of pixelwise correspondence between 
the affine transformed input and the model is computed 
using optical flow [5]. Given this dense set of correspon- 
dences, the affine transformed input can be brought into 
pixel-level correspondence with the model by applying 
a 2D warp operation driven by the optical flow (also 
see Shashua[35]). Basically, pixels : the affine trans- 
formed input are "pushed" along ti.e flow vectors to 
their corresponding pixels in the model. In figure 9, 
we first compute optical flow between the affine trans- 
formed input (left, from figure 8) and the model image 
(middle, from figure 6). Then a 2D warp driven by the 
optical flow is applied to the affine transformed input, 
which produces the result on the right. When the input 

and model are the same person, optical flow succeeds 
in finding correspondence and can compensate for small 
rotation, scale, and expression differences between the 
affine transformed input and model. When the input 
and model are different, optical flow can fail to find cor- 
rect correspondence, in which case the 2D warp distorts 
the image and the template match will be poor. This 
failure case, however, does not matter since we want to 
reject the match anyway. 

Now that the input and model image have been geo- 
metrically registered, in steps (5) and (6) the eye, nose, 
and mouth model templates are correlated against the 
input. Each model template is correlated over a small 
region (e.g. 5x5) centered around its expected location 
in the input. Normalized correlation is the matching 
metric, and it is of the same form described in section 
3 on feature detection. We use normalized correlation 
because it factors out differences in template mean and 
standard deviation, which might be caused by differences 
in lighting. 

When scoring a person in step (7), the system takes 
the sum of correlations from the best matching eye, nose, 
and mouth templates. Note that we maximize over the 
poses separately for each template, so the best match- 
ing left eye could be from pose 1 and the best matching 
nose from pose 2, and so on. We found that switching 
the order of the sum and max operations - first sum- 
ming template scores and then maximizing over poses - 
gives slightly worse performance, probably because the 
original sum/max ordering is more flexible. 

After comparing the input against all people in the li- 
brary, the recognizer returns the person with the highest 
correlation score - we have not yet developed a criterion 
on how good a match has to be to be believable. Con- 
sidering a task like face verification, however, having the 
ability to reject inputs is important and is something we 
plan under future work. 

4.3     Experimental results 

As mentioned previously in section 4.1 on template de- 
sign, we have tested our face recognizer under different 
template resolutions and methods of preprocessing. For 
each recognition experiment, we ran the recognizer on 
our data base of 620 test images, 10 images each of 62 
people. The recognition experiments use the eyes and 
nose features found by our feature finder to drive the 
geometrical alignment stage. Of the 620 test images in 
our data base, the feature finder returns a bad result 
for two images. As we run the recognizer on those test 
images for which the feature finder produces a good or 
marginal result, these two test images are excluded from 
the recognition tests. These excluded images are listed 
in the rightmost column of tables 1 and 2. 

Table 1 summarizes our recognition results for the pre- 
processing experiments. The types of preprocessing we 
tested include the gradient magnitude (mag), Laplacian 
(lap), sum of separate correlations on x and y compo- 
nents of the gradient (dx+dy), and the original grey lev- 
els (grey). For these preprocessing experiments we used 
an intermediate template scale, an interocular distance 
of 30. In table 1, we list the number of correct recogni- 



tions and the number of times the correct person came 
in second, third, or past third place. Best performance 
was had from dx+dy, mag, and lap, with dx+dy yield- 
ing the best recognition rate at 98.7%. Preprocessing 
with the gradient magnitude performs nearly as well, a 
result in agreement with the preprocessing experiments 
of Brunelli and Pogggio[7]. Given that using the original 
grey levels produces the lower rate of 94.5%, our results 
indicate that preprocessing the image with a differential 
operator gives the system a performance advantage. We 
think the performance differences between dx+dy, mag, 
and lap are too small to say that one preprocessing type 
stands out over the others. 

Table 2 summarizes our recognition results for the 
template scale experiments, where scale is measured by 
the interocular distance of a frontal view. The prepro- 
cessing was fixed at dx+dy. The intermediate and fine 
scales perform the best, indicating that at least for our 
input representation, the coarsest scale may be losing 
detail needed to distinguish between people. Since the 
intermediate scale has a computational advantage over 
the finer scale, we would recommend operating a face 
recognizer at the intermediate scale. 

Consider the errors made for the best combination of 
preprocessing and scale, dx+dy at an intermediate scale. 
Of the 8 errors, 2 were due to the feature finder and 
6 were recognition errors. In the one recognition error 
where the correct person was not even among the top 
three, the correspondences from optical flow were poor. 
For the other errors, the correct person came in either 
second or third place. For these false positive matches, 
using optical flow to warp the input to the model may 
be contributing to the problem. If two people are similar 
enough, the optical flow can effectively "morph" one per- 
son into the other, making the matcher a bit too flexible 
at times. 

The problem with optical flow sometimes making 
the matcher too flexible suggests some extensions to 
the recognizer. Since we only want to compensate for 
rotational, scale, or expression changes and not allow 
"identity-changing" transforms, perhaps the optical flow 
can be interpreted and the match discarded if the optical 
flow is not from the allowed class of transformations. An- 
other approach would be to penalize a match using some 
smoothness measure of optical flow. The new matching 
metric would have a regularized flavor, being the sum of 
correlation and smoothness terms 

\\I(x + Ax)-T\\2 + \<t>(Ax), 

where I(x + Ax) is the input warped by the flow Ax, T 
is the template, </> is a smoothness functional including 
derivatives, and A is a parameter controlling the trade 
off between correlation and smoothness. This functional 
has an interpretation as the combination of a noise model 
on the intensity image and priors on the flow. 

Besides adding constraints on the flow-based corre- 
spondences, another technique for increasing the overall 
discrimination power of the face representation would be 
to add information about face geometry. A geometrical 
feature vector of distances and angles that is similar to 
current feature geometry approaches could be tried, but 

the representation would have to be extended to deal 
with varying pose. 

In terms of execution time, our current system takes 
about 1 second to do each input/model comparison on a 
Sun Sparc 1. The computation time is dominated by re- 
sampling the image during the affine transform, optical 
flow, and correlation. On our unoptimized CM-5 imple- 
mentation, it takes about 10 seconds for the template- 
based recognizer to run since we can distribute the data 
base so that each processor compares the input against 
one person. Specialized hardware, for example correla- 
tion chips[42], can be used to further speed up the com- 
putation. 

5    Conclusion 

In this paper we presented a view-based approach for 
recognizing faces under varying pose. Motivated by the 
success of recent template-based approaches for frontal 
views, our approach models faces with templates from 
15 views that sample different poses from the viewing 
sphere. The recognizer consists of two main stages, a ge- 
ometrical alignment stage where the input is registered 
with the model views and a correlation stage for match- 
ing. Our recognizer has achieved a recognition rate of 
98% on a data base 62 people. The data base consists of 
930 modelling views and 620 testing views covering a va- 
riety of poses, including rotations in depth and rotations 
in the image plane. 

We have also developed a facial feature finder to pro- 
vide feature locations for the geometrical alignment stage 
in the recognizer. Like the recognizer, our feature finder 
is template-based, employing templates of the eyes and 
nose regions to locate the two irises and one nose lobe 
feature. Since the feature finder runs before the recog- 
nizer, the feature finder must be pose independent and 
work for a variety of people. We satisfy this requirement 
by using a large set of templates from many views and 
across many people. While the features are currently 
used to register input and model views, the feature finder 
has other applications. For instance, it could be used to 
initialize a facial feature tracker, finding the feature loca- 
tions in the first frame. This would be useful for virtual 
reality, HCI, and low bandwidth teleconferencing. 

In the future, we plan on adding more people to the 
data base and adding a rejection criterion to the recog- 
nizer. We would also like to improve the estimate of pose 
returned by the feature finder. A better pose estimate 
will enable the recognizer to search over a smaller set of 
model poses. 

In a related line of research, we plan on addressing 
the problem of recognizing a person's face under varying 
pose when only one view of the person is available. This 
will be useful in situations where you do not have the lux- 
ury of taking many modelling images. The key to mak- 
ing this work will be an example-based learning system 
that uses multiple images of prototype faces undergoing 
changes in pose to "learn" what it means to rotate a face 
(see Poggio[29], Poggio and Vetter[30]). The system will 
apply this knowledge to synthesize new "virtual" views 
of the person's face. 

Overall, we have demonstrated in this paper that 



template-based face recognition systems can be extended 
in a straightforward way to deal with the problem of 
varying pose. However, to make a truly general face 
recognition system, more work needs to be done, espe- 
cially to handle variability in expression and lighting con- 
ditions. 
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Figure 1: The view-based face recognizer uses 15 views to model a person's face. 

Figure 2: For each person, 10 test images are taken that sample random poses from the viewing sphere. 

Figure 3: Example templates of the eyes and nose used by the feature finder. 

Figure 4: In the feature finding process, an extracted portion of the input (left) is brought into pixel level correspon- 
dence with a template (middle) using an optical flow algorithm. The input is then warped to make it mimic the 
geometry of the template (right). 
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Figure 5: Iris and nose lobe features located by the feature finder in some example test images. 

Figure 6: Templates of the eyes, nose, and mouth are used to represent faces. 

Template-based recognizer 

(1) selected poses <— left or right group of poses, from pose estimator 
(2) for person <- 1 to NUM-PEOPLE /* for all people in data base */ 
(3) forall pose G selected poses /* for all poses to search */ 
(4) align input to model pose: affine transform & optical flow 
(5) for template <- 1 to NUM.TEMPLATES /* loop over eyes, nose, mouth */ 
(6) cor[person] [pose][template] <— correlation value 

NUMJTEMPLATES 

(7) score[person] <— V] ( max (cor[person][pose][template])) 
^r    _        poseeselected poses 

Figure 7: Pseudocode for our template-based recognizer. 
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Figure 8: An example input image and the result of applying an affine transform to bring into correspondence the 
two eyes and a nose feature with the model face in figure 6. 

S§SSSSS^«K^$siä&Ä 

Figure 9: Using a 2D warp driven by the optical flow between the affine transformed input (left, from figure 8) and 
the model image (middle, from figure 6), the system warps the affine transformed input to produce the image on the 
right. 

preprocessing 
performance - 620 test images 

bad features correct 2nd place 3rd place >3rd place 
dx+dy 98.71%     (612) 0.32%      (2) 0.48%    (3) 0.16%      (1) 0.32%     (2) 
mag 98.23%     (609) 0.81%      (5) 0.32%    (2) 0.32%      (2) 0.32%      (2) 
lap 98.07%    (608) 0.81%      (5) 0.32%    (2) 0.48%      (3) 0.32%     (2) 
grey 94.52%    (586) 1.94%    (12) 0.48%    (3) 2.74%    (17) 0.32%     (2) 

Table 1: Face recognition performance versus preprocessing. Best performance is from using the gradient magnitude 
(mag), Laplacian (lap), or the sum of separate correlations on the x and y gradient components (dx+dy). An 
intermediate scale was used, with an interocular distance of 30. 

interocular distance 
performance - 620 test images 

bad features correct 2nd place 3rd place >3rd place 
15 96.13%    (596) 2.26%     (14) 0.32%     (2) 0.97%    (6) 0.32%      (2) 
30 98.71%    (612) 0.32%       (2) 0.48%     (3) 0.16%    (1) 0.32%     (2) 
60 98.39%    (610) 0.81%      (5) 0.16%    (1) 0.32%    (2) 0.32%     (2) 

Table 2: Face recognition performance versus scale, as measured by interocular distance (in pixels). The intermediate 
scale performs the best, a result in agreement with Brunelli and Poggio[7]. For preprocessing, separate correlations 
on the x and y components of the gradient were computed and then summed (dx+dy). 
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